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SUMMARY
This paper presents a fractional-order sliding mode control scheme equipped with a disturbance
observer for robust impedance control of a single-link flexible robot arm when it comes into contact
with an unknown environment. In this research, the impedance control problem is studied for both
unconstrained and constrained maneuvers. The proposed control strategy is robust with respect to
the changes of the environment parameters (such as stiffness and damping coefficient), the unknown
Coulomb friction disturbances, payload, and viscous friction variations. The proposed control scheme
is also valid for both unconstrained and constrained motions. Our novel approach automatically
switches from the free to the constrained motion mode using a simple algorithm of contact detection.
In this regard, an impedance control scheme is proposed with the inner loop position control. This
means that in the free motion, the applied force to the environment is zero and the reference trajectory
for the inner loop position control is the desired trajectory. However, in the constrained motion the
reference trajectory for the inner loop is determined by the desired impedance dynamics. Stability
of the closed loop control system is proved by Lyapunov theory. Several numerical simulations are
carried out to indicate the capability and the effectiveness of the proposed control scheme.

KEYWORDS: Robust impedance control; Fractional-order sliding mode control; Disturbance
observer; Single-link flexible robots; Unknown environment.

1. Introduction
Over the past few decades, research on flexible manipulators has been developed since new robotics
applications have arisen in different areas such as industrial robots applications. The tendency in
these applications is to use the lightweight materials in the construction of manipulators in order to
improve their performance, i.e., high speed, high precision, and high payload/weight ratio. In ref. [1],
some of the applications of flexible manipulators have been reviewed—for example, robotic booms
in the aerospace industry, where the lightweight of the manipulators are an essential requirement;2

the control of large structures, such as boom cranes and fire rescue turntable-ladders, which are
treated as flexible link robots;3 motion control of robotic sensing antenna systems;4,5 and minimally
invasive surgery carried out with thin flexible instruments in which precise automatic manipulators
are necessary.6

A very lightweight flexible robot system has several advantages over the traditional rigid robot
manipulators. These advantages consist lower energy consumption, relatively smaller actuators,
lower cost, higher maneuverability, better transportability, and higher payload-to-arm weight ratio.
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Moreover, the severity of collision with obstacles or human is reduced because of the flexibility of the
arm. In spite of these advantageous features, its control is very difficult. One of these difficulties is the
suppression of vibrations caused by structural flexibility and the other one arises from the complex
model of the flexible manipulators.

In general, all of the aforementioned robotic tasks can be classified into two different categories:
unconstrained and constrained motion. In the first case, the manipulator is driven in its workspace
without contact with the environment (free motion of the manipulator). In the second case, the
manipulator interacts with its environment. In this situation the environment continuously exerts
a dynamics or kinematic constraint on the manipulator’s motion.

Impedance control, compliance control, and hybrid position/force control are three main
approaches, which are usually used to control flexible manipulators. Among those, impedance control
has a universal feature that makes it more efficient in the compliant motions control. Therefore, it is
widely used to control the end-effector of robot manipulators while interacting with an environment.
The idea of impedance control was presented by Hogan for the first time.7 In this method, neither
the position nor the force is used for control, but a generalized impedance equation, which combines
the position and force errors, is utilized. This equation is defined as the target impedance between
the motion (position and orientation) and the interaction loads (forces and torques). Therefore, the
impedance control system is reduced to a position control system during unconstrained maneuvers
(free motion) and is performed as a force control system during constrained maneuvers.

Impedance control of the constrained robotic systems has been a well-known framework in the
robot control in the past two decades. Nowadays, its importance becomes more tangible since robot
applications are oriented toward assisting human. Some of these practical tasks are as follows:
assembly, grinding, cutting, drilling, insertion, joining, contour following, scribing, drawing, and
deburring that associate with an interaction between the flexible arm and environment.

Impedance control of the rigid manipulator has been extensively reviewed in the literature in the
last two decades.8–15 Many researchers have investigated position control, force control, and hybrid
position/force control. However, the robust impedance control of the flexible manipulator has been
rarely addressed in the literature.

In recent decades, various control strategies have been proposed on the subject of flexible
manipulators interacting with the environment.16–22 The main goal of these works is to cancel the
vibrations caused by structural flexibility. Some of these control strategies can be found in refs. [23–
26]. In refs. [24] and [25], a fractional-order active vibration suppression technique is used to control
a flexible structure. In this work, a piezoelectric actuator is attached externally to the flexible structure
to suppress the unwanted vibrations. In ref. [18], two nested control loop are proposed based on
sliding mode control (SMC) for the position control of a very lightweight single-link flexible robot,
which is robust to payload changes and motor friction. Each of these control loops is controlled by an
independent sliding mode controller. In ref. [16], a position control strategy, consisting of two inner
and outer loops, is proposed for two degrees of freedom flexible link. The inner loop is used to control
the position of two servo-motors, and the outer-loop is used to cancel the tip vibration. In ref. [19],
force control of a very lightweight single-link flexible manipulator based on coupling torque feedback
is studied. The main objective of this work is regulation of the contact force that exerted by a very
lightweight single-link flexible manipulator when it comes into contact with a motionless environment.
Force control problem is studied for both free and constrained motions of the flexible manipulator,
and a collision detection algorithm is also described. A modified proportional-integral-derivative
(PID) controller is used to realize the aforementioned objective. In ref. [20], the modeling and the
impedance control of a single-link flexible arm is presented for both constrained and unconstrained
maneuvers.

In most of the reported articles related to the control of a single-link flexible arm interacting
with the environment,19,20 two separate controllers are suggested to control the system for two
different operating modes (free and constrained motions). Therefore, two different dynamic models
are required for these operating modes. Moreover, a collision detection algorithm is also required
for switching the controller from the unconstrained to the constrained motion mode. In addition,
the parameters of the system model such as stiffness and damping coefficient have to be known.
In our novel approach, we proposed only one unified model for a single-link flexible arm, which
is valid for both unconstrained and constrained motions. Moreover, the dynamics parameters of
environment are completely unknown. In order to design the controller, we use the information
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of a motionless hypothetical object with pre-defined dynamics parameters. The parameters of the
hypothetical environment can be different from the real environment.

In this paper, a robust impedance control strategy is presented for a very lightweight single-link
flexible arm interacting with the unknown environment using the SMC theory. Fractional-order control
(FOC) has been shown to be a promising tool in the field of control, mechatronics, and biological
systems.4,5,27–40 Therefore, the combination of the FOC and the SMC is proposed in order to improve
the performance of the controller. The main contribution of this paper is that only one model of a
single-link flexible arm is offered for both constrained and free motion modes. As a consequence
of the unified model of the flexible link, we proposed a unified controller based on the impedance
control concept equipped with a disturbance observer, which is valid for both free and constrained
motions. Thus, without needing a separate algorithm to detect collision between the link and the
environment, the controller switches automatically from the free to the constrained motion mode.
Therefore, the proposed unified controller is valid for both free and constrained motions. In general,
the collision point between the flexible arm and unknown environment could occur at any point on the
robot. However, in many applications, especially industrial manipulator, the collision point is often
at the end-effector. In this regard, the position based on impedance control system is proposed with
force tracking. This means that in the free motion, the applied force to the environment is zero and
the reference trajectory for the inner loop position control is the desired trajectory. In the constrained
motion, the reference trajectory for the inner loop position is determined by the desired impedance
model. Assuming the performance of the inner loop position controller is accurate and the dynamics
and the geometry properties of the environment are known, the stiffness gain of the desired impedance
could be selected so that the contact force is regulated to the desired value. Therefore, the precise
design of the inner loop position controller is the important part of this work in the impedance control.

This paper is organized as follows. In Section 2, the modeling of the single-link flexible arm is
addressed. In Section 3, the robust impedance control strategy is discussed based on the conventional
SMC and the fractional-order sliding mode control (FSMC). The stability analysis of closed-loop
control system and the definitions of the performance criteria are presented in Sections 4 and 5,
respectively. In Section 6, the simulation results is provided to illustrate the effectiveness of the
proposed control scheme. Finally, the conclusions are given in Section 7.

2. Modeling of Lightweight Single-Link Flexible Arm
Modeling the dynamics of a single-link flexible arm is comprised of two parts: the dynamics of a
rigid part, also entitled as actuator, including a DC motor with a reduction gear operated by a current
servo-amplifier, which produces the spatial movement of the structure; and the dynamics of a flexible
part, which presents distributed elasticity along the whole structure. In the following, the DC motor
and single-link flexible manipulator dynamics are described, respectively.

2.1. Motor dynamics
In this work, a DC motor with a reduction gear is used as a common electromechanical actuator, in
many control systems in order to drive the single-link flexible slewing beam. This actuator is operated
by a current servo-amplifier. The current servo-amplifier controls the input current to the motor, which
is proportional to the voltage supplied to the servo-amplifier by the computer. The block diagram of the
actuator (servo-amplifier + motor + gear) is shown in Fig. 1, whose equations are given as follows:19

Motor : �m = kmi = J θ̈m + vθ̇m + �coul + �coup (1)

Servo-ampli f ier : i = kaV (2)

Gear : θm = θln; �coup = �l
n (3)

where �̂m is the motor torque, km is the electromechanical constant of the motor, i is the current
supplied to the motor by the servo-amplifier, J is the motor inertia, v is the viscous friction of
the motor, θm is the motor angle, θl is the motor angle in the gear outlet (load angle), �coul is the
Coulomb friction torque, �l is the coupling torque between the flexible slewing link and the motor
shaft (load angle), V is the voltage supplied to the servo-amplifier generated by the computer, ka is the
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Fig. 1. Block diagram of the actuator.

servo-amplifier gain, and n is the reduction ratio of the gear. Therefore, by combining Eqs. (1)–(3),
the complete actuator system dynamics is obtained by the following equation:

knV = Jn2θ̈l + vn2θ̇l + �Fm + �l (4)

where k = kmka and �Fm = n�Coul . The coulomb friction is considered as a perturbation that affects
the system dynamics. This perturbation depends on the sign of the motor angular velocity. Therefore,
the model of the coulomb friction torque can be defined by the following equation:

�coul =
{

�c · sign(θ̇m) θ̇m �= 0
sign(V ) · min(k |V | , �c) θ̇m = 0

(5)

where �c is a constant value, which is different for each motor and represents the static friction value
that the motor torque must exceed to begin the movement, also called the Coulomb friction coefficient.
The first case shows the Coulomb friction torque when the motor is moving, and the second case shows
the same torque when the motor is stopped.

2.2. Link dynamics: Constrained movement
There are several methods that can be used to reduce the link dynamics, such as the lumped parameter
model in which the finite element method can be utilized to discretize the spatial,41 or a lumped-mass
model,42 or the truncation of a distributed parameter model.43 In this work, the lumped-mass model
as described in ref. [44] is used to obtain the reduced flexible link dynamics with tip mass. Figure 2
depicts the single-link flexible arm in constrained motion mode, which it comes into contact with
unknown environment at the end-effector. Next, the following assumptions are considered:

• Assumption 1: All the mass concentrated at the tip position.
• Assumption 2: The tip mass is considered to freely rotate, and therefore, no rotational inertia from

it affects the link dynamics.
• Assumption 3: There is only one collision point.
• Assumption 4: The single-link flexible manipulator rotates in a horizontal plane (the z axis

perpendicular to the plane of the figure).
• Assumption 5: The deformations in the structure is very small, which allows to assume geometrical

linearity, i.e., sin(x) ≈ x, tan(x) ≈ x.
• Assumption 6: The structure oscillates with the fundamental mode of vibration without the higher

modal densities being excited, since it is assumed that the mass of the load is much larger than the
arm’s weight.

Assumption 6 allows us to neglect the other modes of vibration in order to obtain a simple model
for the controller design. The nonlinear dynamics model for the tip angle can be described by the
following equations:44

ml2θ̈t = K1 (θl−θt ) + K3(θl−θt )3 − 2ξ l cos (α(θt−θl ))
√

mK1θ̇t − mgl cos(θt ) + Fcl,
Fc = −Fe

(6)

�l = K1 (θl − θt ) + K3(θl − θt )
3 (7)

where m is the tip mass, l is the length of the arm, ξ is a friction coefficient, and g is referred to as the
acceleration of gravity. Fc is the contact force, Fe is the interaction force applied on the object, θt is
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Fig. 2. Single-link flexible arm.

the angular position of the tip mass, α is a parameter to be adjusted, and K1 and K3 are the rotational
stiffness coefficients of the arm that are considered constant throughout the whole flexible structure,
as described in ref. [44].

In the following, it is assumed that the contact force is defined by its normal component. Therefore,
the tangential component is ignored. It is also assumed that the normal component of the contact force
is along the y-axis. Moreover, there is only one collision point between the tip mass and the unknown
environment, which is occurring at the end-effector. Furthermore, it is assumed that the mechanical
impedance of the unknown environment is represented by the following equation:

Fe = ke(y − yc) + ve
d (y − yc)

dt
(8)

where yc is the static equilibrium point of the object. Substituting y = lθt and yc = lθc into (8) results

Fe = kel (θt − θc) + vel
d (θt − θc)

dt
(9)

where ke and ve are the stiffness and damping characteristics of the unknown environment, and θc is
the initial contact angle of the tip mass with the object. Since yc is a fixed point in the plane, d (θc )

dt = 0,
and Eq. (9) is transformed as follows:

Fe = kel (θt − θc) + vel
d (θt )

dt
(10)

Therefore, the environment impedance is modeled by the well-known spring-damper system.
Substituting (10) in (6) yields

�l = ml2θ̈t + 2ξ l cos (α(θt−θl ))
√

mK1θ̇t + mglcos (θt ) + kel2 (θt − θc) + vel2 d (θt )
dt

(11)
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..

Fig. 3. Robust impedance control scheme based on the inner loop position control with force tracking.

If we make a change of angular coordinates in which we denote �θt = θt − θc and �θl = θl − θc,
then expressions (11), (10), and (7) become as follows:

�l = ml2�θ̈t + 2ξ l cos (α(�θt−�θl ))
√

mK1�θ̇t + mglcos (�θt ) + kel2�θt + νel2�θ̇t (12)

Fe = kel�θt + vel
d (�θt )

dt
(13)

�l = K1 (θl − θc − θt + θc) + K3(θl − θc − θt + θc)3

= K1 (�θl − �θt ) + K3(�θl − �θt )3 (14)

Choosing x1= �θt and x2= �θ̇t as state variables and u = �θl as input, y1=Fe and y2 = �l as
outputs. The nonlinear model for the tip angle in the state-space representation can be achieved by
the following equations:

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2

ẋ2 = K1
ml2 (u − x1) + K3

ml2 (u − x1)3 − ke
m x1 − ve

m x2 − 2ξ

ml cos (α(x1 − u))
√

mK1x2 − g
l cos (x1)

y1 = kelx1 + velx 2

y2 = K1(u − x1) + K3(u − x1)3

(15)

3. Controller Design
In this section, a unified control system is designed for the robust impedance control of the single-link
flexible arm, which is valid for both free and constrained motions. Figure 3 details the control scheme
in which block I demonstrates the nonlinear plant analyzed in the preceding section for constrained
motions (servo-amplifier + DC gear motor + arm + unknown environment), block II determines the
position of the tip angle and calculates the contact force that is exerted to the environment, and block
III represents the robust impedance control based on the inner loop position control with force tracking
which the inner loop position control is a sliding mode controller. The detail of the block I is shown in
Fig. 4. As can be seen from Fig. 4, a simple algorithm based on the angular position of environment
is used to detect the collision for modeling the flexible link in the free and constrained motion
mode.

Before we design the controller, it should be considered that the model must be valid for both
constrained and free movements. In other words, only one dynamics model must be developed
for the single-link flexible arm. To this respect, we utilize the nonlinear dynamics model (15) in
constrained motion mode, which is valid for the free motion mode. The only difference of constrained
and unconstrained maneuvers is taking into consideration of the contact force that is applied to the
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Fig. 4. Dynamics model of actuator, flexible link, and environment.

environment. The free motion can be considered as the constrained motion mode, assuming that the
end-effector in the free motion mode with zero initial contact angle had hit the object with zero
impedance.

After determining the unified model that is able to represent the dynamics characteristics of the
flexible link in both constrained and free motions mode, the unified controller is designed with only
one parameter set, which is satisfying the control requirements. As mentioned in Section 1, in the free
motion mode, the applied force to the environment is zero and the reference trajectory for the inner
loop position control is the desired trajectory (θd ). In the constrained motion, the reference trajectory
for the inner loop position is determined by the desired impedance dynamics, which is generated by
target impedance block in Fig. 3 (θr). Assuming the inner loop position controller is accurate and
the dynamics and the geometry of the environment are known, the stiffness gain of the desired
impedance could be selected so that the contact force is regulated to the desired value. Therefore, the
precise design of the inner loop position controller is the main objective of this work for the robust
impedance control. In the following, the function of the blocks II and III will be explained.

3.1. Determination of the tip angle position and calculation of the contact force (block II)
The difference between the flexible link and the rigid link (with stiff actuator) is that the motor angle
is not equal to the other points angle of the link. In other words, each point on the flexible link has
some deflection in comparison to the rigid one. Despite this deflection, the tip angle someway must
be regulated to the reference trajectory by the controller. Therefore, to obtain an accurate position
control, it is necessary that the effect of the link flexibility is eliminated. In the impedance control, for
calculating the desired impedance gain to regulate the contact force to a desired value, the collision
point angle, dynamics parameters of the object, and measurement of the contact force are needed.
Besides, the only measurable values are the load torque (�l ) and the load angular position (θl ).
Therefore, the information of the collision point angle and the contact force should be achieved by
using these two values and the governing dynamical equations. By discarding the higher order term
from (7) due to the small deflection of the beam, the tip angle can be approximated as follows:

θt
�= θl − �l

K1
(16)

The interaction force applied on the object is also obtained by substituting (7) into (6):

Fe = 1

l

(
�l − ml θ̈t − 2ξ l cos (α(θt−θl ))

√
mK1θ̇t − mglcos (θt )

)
(17)
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If the stiffness and damping parameters are known, using Eq. (13) the initial contact angle of the tip
mass with the object (θc) can be easily determined according to the following equation:

θc = θt + νe

ke
θ̇t − Fe

(kel )
(18)

This equation can be used to calculate the initial contact angle of the tip mass with the object when
the dynamics parameters of the environment (ke and νe) are known. However, in this study, these
parameters are assumed to be unknown. Therefore, Eq. (18) should be used in another way by assuming
that the link comes into contact with a motionless hypothetical object with known stiffness and
damping coefficients (k∗

e and v∗
e ). In the next section, this information of the hypothetical object must

be used to calculate the desired impedance gain to regulate the interaction force applied on the object to
the desired value. Thus, the position of the motionless hypothetical object (θ∗

c ) can be easily obtained
as follows:

θ∗
c = θt + ν∗

e

k∗
e

θ̇t − Fe(
k∗

e l
) (19)

3.2. Robust impedance control scheme based on the inner loop position control with force tracking
(block III)
3.2.1. Robust impedance control scheme. The objective of impedance control is to create a desired
dynamics behavior between the interaction force exerted on the object and displacement affected by
the object deformation. For achieving the desired impedance behavior the position and contact force
must be regulated. A target impedance equation, which combines the position and the interaction
force is, usually, of the second-order linear system and is given by:

Fe = km
(
θ̈d − θ̈r

) + kd
(
θ̇d − θ̇r

) + kp (θd − θr ) (20)

where θd and θr represent the desired angle and the reference angle for the inner loop position controller,
respectively. Fe is the interaction force applied on the object, which is obtained from (9). Moreover,
km, kd , and kp are target parameters for the desired impedance. In the steady state, by assuming the
accurate inner loop position control and regulating the contact force to a desired value, Eqs. (20) and
(9) are re-written as follows:

Fd = k∗
p (θd − θt ) (21)

Fd = k∗
e l

(
θt − θ∗

c

)
(22)

In Eq. (21), k∗
p is the impedance gain corresponding to the information of the motionless hypothetical

object to regulate the interaction force to the desired value (Fd ). Therefore, by using Eqs. (21) and
(22), the impedance stiffness coefficient could be selected such that the interaction force applied on
the object is regulated to the desired value as the following equation:

k∗
p = Fdk∗

e l

k∗
e l

(
θd − θ∗

c

) − Fd
(23)

3.2.2. Inner loop position control. As aforementioned, the main part of the impedance control design
in this work is related to the design of the inner loop position control. Eliminating the deflection
caused by the link flexibility is the significant challenge of the position control in the flexible link. To
solve this challenge, one may consider the flexible link as a rigid one by assuming that the deflection
of the flexibility is caused by a input disturbance. In this research, first, the sliding mode controller is
used for the inner position control loop. A fractional-order sliding mode controller is, then, applied in
order to improve the proposed controller performance. In order to eliminate the effect of deflection,
the proposed sliding mode controller is equipped with a disturbance observer. Figure 5 details the
inner loop position control block based on the fractional-order sliding mode controller.
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Fig. 5. Inner loop position control block based on a fractional-order sliding mode controller equipped with a
disturbance observer.

.

Fig. 6. The details of disturbance observer in which a simple algorithm is used to detect the collision.

The details of the disturbance observer are shown in Fig. 6. As can be seen in Fig. 6, a simple
algorithm is used to detect the collision based on the measurement of contact force and in comparison
with a specific threshold value being 0.1 N. Formulation of disturbance observer will be discussed in
detail in Section 3.2.5.

In the next subsection, the fractional-order sliding mode controller equipped with a disturbance
observer is described.
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3.2.3. Fractional-order sliding mode controller equipped with a disturbance observer . The interaction
force applied on the environment is given by Eq. (17). Substituting (17) into (12) results

�l = ml2�θ̈t + 2ξ l cos (α(�θt−�θl ))
√

mK1�θ̇t + mglcos (�θt ) + Fel (24)

Equation (4), which is related to the dynamics of actuator system, can be rewritten as follows:

knV = Jn2�θ̈l + vn2�θ̇l + �Fm + �l (25)

In this study, the main idea in the position control of the flexible link is based on this assumption
that the deflection of the beam tip can be considered as a disturbance in the control input. Thus,
according to this hypothesis, the tip angular position of the beam (θt ) is considered as equal as the
motor angular position (θl ). Instead, the source of the beam deflection is considered in the voltage
input. Therefore, the governing dynamical equation of the flexible link with the motor dynamics
becomes a second-order equation that in the state–space representation can be expressed as follows:

{
ẋ1(t ) = x2(t )
ẋ2(t ) = a cos (x1) + cx2 + b (u(t ) + Vd (t)) + z + �d

Fm

(26)

where x1(t ) = �θt (t ), x2(t ) = �θ̇t (t ), a = − mgl
Jn2+ml2 , c = − vn2+2ξ l

√
mK1

Jn2+ml2 , b = Kn
Jn2+ml2 , and z =

− Fel
Jn2+ml2 . �d

Fm
is the Coulomb friction disturbances, and u(t ) and Vd (t) represent the control signal and

the input disturbance, respectively. In the SMC theory, an appropriate sliding surface is selected and
the control input is, then, designed to ensure the SMC finite time reaching condition is satisfied. This
makes the system robust against uncertainties such as parameter variations, frictions, and disturbances.
In the following, a generalized fractional-order surface (PIλDμ) is used for SMC. It is a general surface
that includes three other known surfaces, i.e., PID (λ = 1, μ = 1), PD (λ = 0, μ = 1 and Si = 0),
and a fractional-order surface sliding mode controller PDμ (Si = 0).45

3.2.4. Generalized fractional-order PIλDμ surface sliding mode controller. The fractional-order
differentiator can be defined by a general fundamental operator aDα

t as a generalization of the
differential and integral operators, which is defined in ref. [46]. Then, a PIλDμ sliding surface is
designed as follows:

σ = Sp (θt − θr ) + SiD
−λ (θt − θr ) + SdDμ (θt − θr ) (27)

where Sp, Si, Sd , λ, and μ are adjustable control parameters, which are chosen by the designer. Equation
(27) can be rewritten as follows:

σ = Sp (θt − θr ) + SiD
−λ (θt − θr ) + SdDμ−1 (

θ̇t − θ̇r
)

(28)

Differentiating both sides of Eq. (28) and replacing (26) in (28) yield

σ̇ = Sp
(
x2 − θ̇r

) + SiD
1−λ (θt − θr ) + SdDμ−1

(
a cos (x1) + cx2 + b (u + Vd ) + z + �d

Fm
− θ̈r

)

= Sp
(
x2 − θ̇r

) + SiD
1−λ (θt − θr ) + SdDμ−1

(
a cos (x1) + cx2 + bu + δ (x, t )

Sd
+ z + �d

Fm
− θ̈r

)

(29)

where δ (x, t ) represents the disturbance term that is defined as follows:

δ (x, t ) = SdbVd + �d
Fm

(30)

The control input is split into three parts, namely ueq, un, and us

u = ueq + un + us (31)
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where ueq and un are used to compensate the known terms and disturbance δ, respectively, while
the discontinuous component of the control law us with its smooth approximation is used to
reduce the chattering phenomenon at the sliding phase in the SMC. The uncertainty is estimated
by the disturbance observer and the opposite value of the disturbance (δ) in un is, then, used to
eliminate the effect of uncertainty. Indeed, the estimation of the uncertainty is an important part of
the proposed control scheme. In the following, it is considered that the estimation of δ is available
and it is donated by δ̂. Uncertainty estimation method will be explained in Section 3.2.5, in which a
disturbance observer is used to estimate δ. The equivalent control law can be obtained by setting σ̇

equal to zero:

ueq = − 1

b

(
D1−μ

(
Sp

Sd

(
x2 − θ̇r

)) + D2−λ−μ

(
Si

Sd
(θt − θr )

)
+ a cos(x1) + cx2 + z − θ̈r + ks

Sd
σ

)
(32)

The disturbance rejection and switching control law can be defined as follows:

un = − 1

bSd
δ̂ (33)

us = − 1

bSd
kst sat (σ ) (34)

sat (σ ) =
{

sgn σ i f |σ | ≥ ϕ
σ
ϕ

i f |σ | < ϕ
(35)

where in (35) ks and kst are adjustable positive constants. The equivalent control laws for PID, PD,
and PD surfaces are derived in the Appendix. Substituting (31), and (32) into (29), results in

σ̇ = −ksσ + δ + bSdun + bSdus (36)

Replacing (33) and (34) in (36), the dynamics of the sliding surface is obtained as follows:

σ̇ = −ksσ − kst sat (σ ) + δ (37)

In (37), δ̃ = δ − δ̂ is the disturbance estimation error. If the disturbance estimation (δ̂) is such that
the estimation error (δ̃) goes close to zero, the sliding surface σ will go close to zero; thereby, the sliding
mode condition is satisfied. Therefore, in spite of the link deflection, the reference trajectory, which
is generated by the target impedance block, will be tracked. In the next subsections, a disturbance
observer is proposed to estimate the disturbance (δ).

3.2.5. Disturbance observer . In this section, a disturbance observer is designed to estimate δ such that
the estimation error δ̃ tends to zero. This disturbance observer is a modified version of that presented
in ref. [47]. Let the estimate of the uncertainty δ be expressed by the following equation:

δ̂ = d̂ (t ) + p (σ ) (38)

where d̂ (t ) and δ̂ are an updated law that can be considered as the internal state of the observer and
the estimate of the disturbance, respectively, and p (σ ) may be a linear or nonlinear scalar function
of σ . The d̂ (t ) should be selected in such a way that the δ̂ approaches δ, and thereby, the estimation
error goes to zero. Differentiating both sides of Eq. (38) and substituting σ̇ from (36) yield

˙̂δ = ˙̂d (t ) + ∂ p

∂σ
(−ksσ + δ + bSdun + bSdus) (39)
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The dynamics of d̂ (t ) is considered as follows:

˙̂d (t ) = − ∂ p

∂σ

(−ksσ + δ̂ + bSdun + bSdus
)

(40)

Therefore, the dynamics of δ̂ can be obtained as follows:

˙̂δ = ∂ p

∂σ
δ̃ (41)

Subtracting both sides of (41) from δ̇ yields

˙̃δ = − ∂ p

∂σ
δ̃ + δ̇ (42)

For the stability of δ̃, the p (σ ) must be chosen such that ∂ p
∂σ

be a positive function and the derivative
of δ to be bounded as follows:

∣∣δ̇∣∣ < γ (43)

where γ represents a positive number. In the following section, the stability analysis of closed-loop
system and the boundedness of δ̃ and σ will be explained.

4. Stability Analysis of Closed-Loop Control System
In this section, the stability condition of closed-loop control system was taken from ref. [48]. For
stability analysis a candidate Lyapunov function is considered as follows:

V
(
σ, δ̃

) = 1

2

(
σ 2 + δ̃2) (44)

Taking the time derivative from both sides of (44) and using (37) and (42) yield

V̇
(
σ, δ̃

) = −ksσ
2 − kst sat (σ ) σ + δ̃δ̇ + δ̃σ − ∂ p

∂σ
δ̃2 (45)

Using Young’s inequality, δ̃σ ≤ 1
2

(
δ̃2 + σ 2

)
, δ̃δ̇ ≤ 1

2

(
δ̃2 + δ̇2

)
and (43), Eq. (45) can be rewritten as

follows:

V̇ (σ, ẽ) ≤ −
(

ks − 1

2

)
σ 2 −

(
∂ p

∂σ
− 1

)
δ̃2 + 1

2
γ 2 − kst sat (σ ) σ (46)

The control parameter can be chosen such that
(
ks − 1

2

)
and ( ∂ p

∂σ
− 1) are always positive. From (46),

it can be proven that the dynamics of σ and the uncertainty estimation error δ̃ are not asymptotically
stable but ultimately bounded.49 The upper bounds of

∣∣δ̃∣∣ and |σ | can be obtained from (47) and (48),
respectively

∣∣δ̃∣∣ ≤ β = γ√
2

(
∂ p
∂σ

− 1
) (47)
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|σ | ≤ β +
√

β2 + 4ksγ β

2ks
(48)

Therefore, from (47) and (48), the uncertainty estimation error δ̃ and σ are ultimately bounded, and
the control parameter such as ∂ p

∂σ
, ks, and kst can be chosen so that the bounds on

∣∣δ̃∣∣ and |σ | can be
made sufficiently small.

5. Performance Criteria
In this section, the following performance criteria are defined in order to evaluate the performance of
the controller:

• Root mean squared error (RMSE) for the trajectory tracking in the constrained and free motion
phases:

RMSE = ep + e f (49)

where

ep =
√√√√ tc∑

t=0

‖θd (t ) − θt (t )‖2 T/t f .

and

e f =
√√√√ t f∑

t=t p

‖Fd (t ) − Fe(t )‖2 T/t f .

represent the error value in the free motion and in the constrained motion mode, respectively.

• Root mean square value (RMSV) of the control input voltage:

RMSV =
√√√√ t f∑

0

‖u(t )‖2 T/t f (50)

Both RMSE and RMSV are used as objective numerical measures of tracking performance for an
entire error curve, where T is the sample time, tc is the collision time, and t f and tp ∈ (

tc, t f
)

represent
the total running time of the simulations and a definite time in the collision phase, respectively. In our
simulation, these parameters are chosen as, T = 1 × 10−3 s, tc = 3 s, t f = 10 s, and tp = 4.5 s. The
criterion RMSV shows the consumption of energy.

6. Simulation Results

6.1. Simulation results for the constrained and unconstrained motion phases
Numerical simulations have performed using the SIMULINK. To solve the sets of fractional-order
differential equations related to the sliding mode controller in the inner loop position control and
the dynamics of the system, the CRONE Toolbox and Runge–Kutta solver with a fixed step size
of 0.001 are used. Table I shows physical parameters of the system (block I), which most of them
were taken from refs. [19] and [44]. Table II depicts the control parameters of impedance control and
inner loop position control (block III). The control parameters have been chosen by trial and error so
that the closed-loop control system would be stable. However, this parameter may be optimized by
optimization approaches such as genetic algorithms (GAs).

In the following, the simulation has been carried out for constrained and unconstrained motions, in
the presence of the Coulomb friction disturbances. In the constrained phase, the desired contact force
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Table I. Physical parameters of the system19.

Parameter Description Value

Data of the flexible arm
E Young’s modulus 271 × 109 Pa
I Cross-sectional inertia 3.017 × 10−12 m4

ρ Density 1800 kg/m3

l Length 0.98 m
d Diameter 2.8 × 10−3 mm
m Tip mass 43.71 × 10−3 kg
ξ Friction coefficient 0.00765
K1 Rotational stiffness coefficient 0.385
K3 Rotational stiffness coefficient 0.0225
g Gravitational acceleration 9.8 m/s2

Data of the motor-gear set
J Total motor inertia + reduction gear 6.87 × 10−5 kg m2

v Viscous friction 1.041 × 10−3 kg m2/s
n Reduction ratio of the motor gear 50
K Motor constant 2.1 × 10−1 N m/V
Vsat Saturation voltage of the servo amplifier ±10 V
Data of the environment
ke Stiffness 100 N/m
ve Damping coefficient 1 N s/m

Table II. Control parameters of the system.

Parameter Description Value

Characteristics of the target impedance
kp Target value for the stiffness k∗

p

kd Target value for the damping coefficient
k∗

p

5

km Target value for the inertia coefficient
k∗

p

100
Characteristics of FSMC
Sp Non-negative coefficient for the proportional term 5
Si Non-negative coefficient for the integral term 1
Sd Non-negative coefficient for the derivative term 1
μ Fractional order for the PDμ and the PIλDμ 0.9
λ Fractional order for the PIλDμ 0.9
ks Positive constant for the feedback control gain 1
kst Switching feedback control gain 0.5
∂ p
∂σ 1

Control parameter for the unconstrained phase 10
∂ p
∂σ 2

Control parameter for the constrained phase 10
Characteristics of hypothetical object
k∗

e Stiffness of the hypothetical environment 10 N/m
ν∗

e Damping coefficient of the hypothetical environment 1 Ns/m

has been chosen equal to 20 N (Fd = 20 N), and in the unconstrained phase, the desired trajectory has
been defined as the following equation:

θd (t ) =

⎧⎪⎪⎨
⎪⎪⎩

5t2; 0 ≤ t < 1
10t − 5 ; 1 ≤ t < 3

10
(

4t − t2

2

)
− 50; 3 ≤ t < 4

30; t ≥ 4

(51)

The simulation results are provided for the PD SMC, the PID SMC, the PDμSMC, and the PIλDμSMC
controllers used in the inner loop position control scheme.
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Fig. 7. Transient response of the system for both constrained and unconstrained motions phase. (a) simulation
of the desired trajectory tracking (position control), (b) simulation of the desired contact force regulating (force
control), (c) simulation of the coupling torque, and (d) simulation of the control input voltage.

6.1.1. Simulation results for the PD, the PDμ, the PID, and the PIλDμ surface sliding mode
controllers. Figure 7 illustrates the transient response of the system for both constrained and
unconstrained motions phase. Figure 7(a) shows the desired trajectory tracking (position control
in the free motion phase). Figure 7(b) depicts the transient response of the desired contact force
regulating (force control in the constrained motion phase). Figure 7(c) shows the coupling torque
applied to the beam. Figure 7(d) illustrates the control input voltage to the DC motor.

As can be seen in Fig. 7(a) and (b), before the contact (t < 3 s), the tip angle follows the desired
trajectory and the contact force is zero. In this case, the system is controlled in free motion phase and the
impedance controller acts as a position controller until the collision with the environment is detected
at time t = 3 s. After the impact detection, the system is controlled in constrained phase (during the
contact (t > 3 s)). In this situation, the impedance controller acts as a regulating force controller and
the controller immediately stabilizes the system to track the reference trajectory (desired contact force)
with null steady-state error. As shown in Fig. 7(d), the control effort is very small and never saturates
the amplifier that supplies the motor at 10 and −10 V, providing a smooth trajectory tracking without
overheating the electrical system. In order to compare the performance of the proposed controllers,
the results of simulation are summarized in Table III. It can be seen that the proposed fractional-order
surface SMC (PDμ and PIλDμ) has the smaller error, better tracking and robustness capabilities than
the classical sliding mode controllers (PD SMC and PID SMC) specially in constrained motion phase.
However, the computational complexity of the proposed fractional controller is more than its integer
order counterpart, which is computationally simple.

According to Table III, the fractional-order sliding mode controllers relatively outperformed the
conventional sliding mode controllers. Therefore, in the following subsections, we prefer to perform
the rest of simulations by using the proposed fractional-order surface PDμ SMC.

6.2. Simulation results for the constrained motion with different values of the environment
parameters
In this section, first, the simulations were performed for different values of the environment stiffness
(we assume ve = 1 Ns

m ). Then, the simulations were performed for different values of the environment
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Table III. Simulation results of the proposed controllers performances, in presence of the Coulomb friction
disturbances.

Inner loop position control strategy ep e f RMSE RMSV

PDSMC 0.2641 0.2388 0.5029 2.0839
PDμSMC 0.2673 0.1968 0.4640 2.0799
PIDSMC 0.2849 0.5166 0.8014 2.0436
PIλDμSMC 0.2849 0.3056 0.5905 2.0568

Fig. 8. Transient response of the system for constrained motion phase with different values of the environment
stiffness. (a) Simulation of the desired contact force regulating, (b) detail of subfigure (a), (c) simulation of the
control input voltage, and (d) detail of subfigure (c).

damping coefficient (we assume ke = 100 N
m ) in order to illustrate the robustness of the proposed

control strategy against changes in the environment parameters. Figures 8 and 9 show the simulation
results for different values of stiffness and damping coefficient, respectively.

As it can be observed from Figs. 8 and 9, there is a slight oscillation in the collision phase with
smaller values of the stiffness and damping coefficient of the environment (very soft environment).
However, these oscillations will disappear by increasing the stiffness and damping coefficient of
the environment. Moreover, the system response is stable against variations in the stiffness of the
environment.

6.3. Simulation results for different values of the stiffness of hypothetical environment
In this section, in order to show robustness of the controller several simulations are performed for
different values of the stiffness of hypothetical environment (k∗

e ).
As shown in Fig. 10, the transient response of the system for both constrained and unconstrained

motions mode is valid for the different values of the stiffness of the hypothetical environment and the
controller makes sure to be robust against the uncertainty of the environment.

6.4. Simulation results for the constrained motion with possible variations in payload and viscous
friction
In this section, effects of changes in the payload (m) and viscous friction (v) in the system response
have been investigated. This payload variations can be occurred, for instance, due to the use of various
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Fig. 9. Transient response of the system for constrained motion phase with different values of the environment
damping coefficient. (a) Simulation of the desired contact force regulating, (b) detail of subfigure (a), (c)
simulation of the control input voltage, and (d) detail of subfigure (c).

Fig. 10. Transient response of the system for both constrained and unconstrained motions phases. (a) Simulation
of the desired trajectory tracking (position control), (b) simulation of the desired contact force regulating (force
control), (c) simulation of the control input voltage, and (d) simulation of the sliding surface.

tools placed at the end-effector of the manipulator. A range of possible payload values (mn ± 0.25mn,
mn = 0.044 kg being the nominal value) have been chosen so that the arm could support under
normal operating condition. Robustness of the control system has also been studied under variations
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Fig. 11. Transient response of the system for constrained motion phase when payload and viscous friction vary
simultaneously in the defined range. (a) Simulation of the desired trajectory tracking (position control), (b)
maximum deviation from the nominal value in free motion mode, (c) simulation of the desired contact force
regulating, and (d) simulation of the control input voltage.

in the viscous friction parameter (vn ± 0.25vn, vn = 1.041 × 10−3 kg m2/s being the nominal value).
The other remaining parameters of the system have been assumed unchanged. Figure 11 shows the
simulation results when both parameters vary at the same time in the defined range.

As can be seen from Fig. 11(a) and (b), the maximum deviation of the system response with respect
to the nominal case (mn, vn) in free motion phase is 0.9 ◦ when m is equal to mmax = mn + 0.25mn and
v is equal to vmin = vn − 0.25vn. From Fig. 11(c), it is obvious that the steady state error is near to
zero and there is no deviation of the system response with respect to the nominal case in constrained
motion phase. As can be illustrated in Fig. 11(d), the control input voltage is smooth and never exceed
the saturation voltage of the amplifier in both free and constrained motions mode.

6.5. Simulation results for the FSMC equipped with disturbances observer and the conventional
SMC
In this section, in order to investigate the capability of the FSMC equipped with disturbance observer
(the proposed control approach) in comparison with the conventional SMC without disturbances
observer, several simulations are carried out for both constrained and unconstrained motion modes.

Figure 12 illustrates the transient response of the system for both constrained and unconstrained
motions phase. Figure 12(a) shows the desired trajectory tracking (position control in the free motion
phase). Figure 12(b) depicts the transient response of the desired contact force (force control in the
constrained motion phase). Figure 12(c) and (d) shows the control input voltage to the DC motor and
the sliding surface, respectively.

As can be illustrated from Fig. 12, the FSMC equipped with disturbance observer used in inner loop
position control block (black curve) outperformed the conventional SMC without disturbance observer
in both free and constrained motions modes. In the free motion mode, as shown in Fig. 12(a), the tip
angular position (black curve) follows completely the desired angular position trajectory. Whereas,
the simulation result of the conventional SMC shows that the tip angular position (red curve) is
unable to track the desired angular position trajectory. In the constrained motion phase, as shown in
Fig. 12(b), the contact force is regulating to its desired value without any steady state error. However,
the conventional SMC simulation result shows that the contact force oscillates around the desired value
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Fig. 12. Transient response of the system for both constrained and unconstrained motions phase. (a) Simulation
of the desired trajectory tracking (position control), (b) simulation of the desired contact force regulating (force
control), (c) simulation of the control input voltage, and (d) simulation of the sliding surface.

in the steady state. As shown in Fig. 12(c), the control input voltage obtained in the proposed control
method is much smoother and with less oscillations amplitude than the control input voltage is obtained
from the conventional SMC. It should be noted that, the disturbance observer used in the FSMC,
compensates the input disturbance caused by the flexibility of the link in addition to compensation
parameter uncertainties and Coulomb friction disturbances. Thus, the proposed FSMC equipped with
disturbance observer has better performance as compared with the conventional SMC in both free
and constrained motions mode. Moreover, as shown in Fig. 12(d), the chattering phenomenon has
been eliminated by using the proposed control approach along with the use of the smoothing function
(sat (σ )) in the control law.

7. Conclusion
A robust impedance control for a single-link flexible manipulator has been designed by using the
FSMC scheme under unknown environment. The FSMC is also equipped with a disturbance observer.
First, the nonlinear dynamics model of the tip angle is derived based on a lumped masses model in
the constrained motion phase. A unified control strategy is, then, designed based on this nonlinear
model. The main contribution of this work is that only one model is used to design the controller,
which is valid for both constrained and unconstrained motions. Thus, without needing a separate
algorithm to detect collision between link and the environment, the controller switches automatically
from the free motion to the constrained motion phase. In this regard, the position-based impedance
control system is proposed with force tracking. The precise design of the inner loop position controller
is the important part of impedance control. Therefore, primarily a classical sliding mode controller
is designed for the inner loop position control. The work is, then, followed by using a fractional-
order sliding mode controller. The combination of the fractional control and the SMC equipped
with a disturbance observer is used to improve the performance of the system response. This hybrid
system makes the system more robust against uncertainties and disturbances. The simulation results
demonstrate the significance of the proposed control approach in both free motion and constrained
motions modes where the flexible link interacting with unknown environment. Moreover, the proposed
control scheme is robust against the parameter variations of environment, payload and viscous friction
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variations, and input disturbances. Such that with 25% variation in parameters of the system, in the
free motion mode, the maximum deviation from the nominal value is 0.9 ◦. In the constrained motion
mode, the steady-state error of the desired contact force regulating is zero. Besides, the control input
voltage is smooth and never saturates the amplifier that supplies the motor at 10 and −10 V. Therefore,
this feature makes the practical implementation of the proposed control approach to be feasible.

Conflicts of Interest
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or
publication of this paper.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this
paper.

References
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Appendix: The equivalent control law for PID, PD, and PDμ surfaces
Conventional PID surface sliding mode controller
A PID sliding surface can be expressed as follows:

σ = Sp (θt − θr ) + Si

∫
(θt − θr ) dt + Sd

(
θ̇t − θ̇r

)
(A.1)

where Sp, Si, and Sd are adjustable control parameters, which are chosen by designer. Differentiating
both sides of Eq. (A.1) and replacing (26) in (A.1) yield

σ̇ = Six1 + (
Sp + Sdc

)
x2 + Sda cos (x1) − (

Siθr + Spθ̇r + Sd θ̈r
) + bSd (u + Vd ) + Sdz + �d

Fm

= Six1 + (
Sp + Sdc

)
x2 + Sda cos (x1) − (

Siθr + Spθ̇r + Sd θ̈r
) + bSdu + Sdz + δ (x, t )

(A.2)

Similar to the Section 3.2.4 the control input splits into three parts according to (31). un and us are
obtained in accordance with Eqs. (33) and (34), respectively. The component ueq is used to compensate
the known terms as the following equation, which is equal to (32) when we set (λ = μ = 1)

ueq = −1

b

((
Sp + Sdc

Sd

)
x2 + a cos (x1) +

(
Si

Sd

)
x1 −

(
Si

Sd
θr + Sp

Sd
θ̇r + θ̈r

)
+ z + ks

Sd
σ

) )

(A.3)
Substituting (33), (34), and (A.3) in (A.2), the sliding surface dynamics is obtained as Eq. (37).

Conventional PD Surface Sliding Mode Controller
A typical PD sliding surface can be selected as follows:

σ = Sp (θt − θr ) + Sd
(
θ̇t − θ̇r

)
(A.4)

where Sp and Sd are adjustable control parameters, which are chosen by the designer. Taking the time
derivative of both sides of (27) and using (26), one can obtain

σ̇ = (
Sp + Sdc

)
x2 + Sda cos (x1) − Spθ̇r + Sdb (u + Vd) − Sd θ̈r + Sdz + �d

Fm

= (
Sp + Sdc

)
x2 + Sda cos (x1) − Spθ̇r + Sdbu − Sd θ̈r + Sdz + δ (x, t ) (A.5)

As mentioned above, the control input may be split into three parts according to Eq. (31). un and
us are obtained in accordance with Eqs. (32) and (33), respectively. The component ueq is used to
compensate the known terms as the following equation, which is equal to (32) when we select Si = 0
and set μ = 1.

ueq = −1

b

((
Sp + Sdc

Sd

)
x2 + a cos (x1) − Sp

Sd
θ̇r − θ̈r + z + ks

Sd
σ

)
(A.6)

Replacing (33), (34), and (A.6) in (A.5), the dynamics of the sliding surface is obtained, which again
is equal to Eq. (37).

Fractional-Order PDμ Surface Sliding Mode Controller
A PDμ sliding surface can be written as follows:

σ = Sp (θt − θr ) + SdDμ (θt − θr ) (A.7)
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where Sp, Sd , and μ are adjustable control parameters, which are selected by the designer. Equation
(A.7) may be rewritten as follows:

σ = Sp (θt − θr ) + SdDμ−1
(
θ̇t − θ̇r

)
(A.8)

Taking a derivative from both sides of Eq. (A.8) and substitution of (26) in (A.8) result

σ̇ = Sp
(
x2 − θ̇r

) + SdDμ−1
(
a cos (x1) + cx2 + b (u + Vd ) + z + �d

Fm
− θ̈r

)

= Sp
(
x2 − θ̇r

) + SdDμ−1

(
a cos (x1) + cx2 + bu + δ (x, t )

Sd
+ z + �d

Fm
− θ̈r

)
(A.9)

This reminds again, as mentioned in the two previous subsections, the control input splits into three
parts according to Eq. (31). un and us are obtained in accordance with Eqs. (33) and (34), respectively.
The component ueq is used to compensate the known terms as the following equation, which is equal
to (32) when we set Si = 0

ueq = −1

b

(
D1−μ

(
Sp

Sd

(
x2 − θ̇r

)) + a cos (x1) + cx2 + z − θ̈r + ks

Sd
σ

)
(A.10)

Using (33), (34), and (A.10) in (A.9), the dynamics of the sliding surface is consequently obtained as
Eq. (37).
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